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MEASURE-VALUED PROCESSES IN THE

CONTROL OF PARTIALLY-OBSERVABLE STOCHASTIC SYSTEMS

WENDELL H. FLEMING

ABSTRACT

This paper is concerned with the optimal control of continuous-

time Markov processes. The admissible control laws are based on white-

noise corrupted observations of a function on the state processes. A

“separa ted” control problem is introduced , whose states are probability

mea sures on the or iginal state space. The orig inal and separated

control problems are related via the nonlinear filter equation . The

existence of a minimum fo.1 the separated problem is established. Under

more restrictive assumptions it is shown that the minimum expected

cost for the separated problem equals the infimum of expected costs

for the or iginal problem with partially observed states.
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MEASURE-VALUED PROCESSES IN THE

CONTROL OF PARTIALLY-OBSERVABLE STOCHASTIC SYSTEMS

Wendell H. Fleming

1. Introduction.

We are concerned with optimal control of partially-observable

stochastic systems , of the following kind. The state (or signal)

process is denoted by x~ , 0 < t < 1, wi th x~ € ~ where E is

some given “state space ”. The control process is denoted by ~~

0 < t < T, wi th u~ E U where U Is some given “control” space.

The control u~ is allowed to depend on observa tions y5 for

0 < s < t. In this paper , we sha ll assume that

(1.1) a h(x5)ds + w~ ,J o

where is a brownian motion process of some dimension V .

The object is to minimize a criterion of the form E$(x1), given

an initial distribution of the random variable x0.

A precise formulation of the partially-observable control problem

is given in §2. An open problem , apparently difficult, is to prove

the existence of an optimal control process in case of partial

observations. We do not solve this problem here. Ins tead , we

introduce a related control problem in §3 , wh ich we ca ll the

“separated” problem . In the separa ted problem the “state” at

time t is a probability measure on E. The state process is

governed by a stochastic partial differential equation , driven by

some v-d imensiona l brownian motion bt (see (3.1) for this



..~~

equatioi~ wri tten in a weak form) . In the separated problem, the

controller is allowed (roughly speaking) complete past observa-

tions in choosing the control u~ . See §3 for the precise

formulation . The objective is to minimize EllT(~
), given 110,

where

(1.2) 11(g) = I g(x)dlI(x).

The original control prob lem with partial observations and

the separated problem are related through the nonlinear filter

equation (2.5), which is the same as equation (3.1) if is the

conditional distribution of x~ given past observations and

b
~ 

a is the innovation . -

In §4 we establish some tightness and closure properties

associa ted with the separa ted problem . Then we prove a result

about the existence of a minimum for the separated problem

(Theorem 1). The method is an adaptation of (4]. If we let

denote the minimum of E1T
T(11) in the separated problem and a

be the inf imum of E
~

(xT) in the original problem , then the

nonlinear filter equation implies that < a. In §9 we show

that ct~ a, under fairly restrictive assumptions (Theorem 3).

A result like Theorem 3 was proved by Bismut [2] when E is a

finite set , under still more restrictive conditions .

A separated control problem with state space Z was also

considered by Segall [10). He considered both observations of

the type (1.2) and point observations. A nonlinear semigroup
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approach , when E is finite , was taken by Davis (3).

Another case of consider able interes t is when the state process

x~ obeys a stochastic differential equation

— 
(1.3) dx

~ 
a f(x t,ut)dt +

where is a brownian motion independent of the brownian motion

in (1.2). Unfortunately, our results do not include this case.

A minor difficulty is that the state space Z is some euclidean

space , wh ich is not compact as assumed in §2. A more significant

difficulty is that the generator ~/U  associated with (1.3) when

u is a Constant control is an unbounded operator. The method used

to prove Theorem 3 would have to be changed to deal with this case.

It is hoped that the device of introducing the separated problem

may eventually be useful to study existence of optimal. controls for

— 
the partially observed control problem .

2. The Control Problem with Partial Observations.

Throughout the paper we assume that x~ E ~~, where E Is a

compac t metric space; moreover , u~ £ U, where U is a compac t, convex

subs et of euclidean R~ for some ~~~~. In (1.1) we assume that

h € C( E;R’~); moreover , in the cr iter ion to be minimized • £ C(E ) ,
where C(E) a C( E ;R~) is the space of continuous real-valued

functions on E.

We assume that for each constant control u € U there is a

semigroup Y~ on C(s) assoc iated with a Markov , Feller process

x~ . Let ~~~ be the generator of the sem igroup 7~. We assume that:

— 
- ,---- - 

.. -.- --
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(2.1) There is a dense set ~ c C(~) such that ~1 c ~1(~~~U )

for all u £ U. Given g £ 
~~~, /

U
g £ C(U;C(~:l).

(.2) Given g £ C~~) and t > 0 , i~~~~ (x )  £ C(~ * U).

Let D([O,T1 ;~~) denote the space of ~-valued t’unc tions which

are ri ght continuous and have left hand limits for each t € (0 ,1];

see [1).

A d m i s s i b l e  systems (J~.O . ) .  Let x ,u ,w be processes defined

on some p r o b a h u l i t v  space t~~, .‘~,t ‘~~),P). provided with an In-

c rea s ing  family ( of t~-al gebras , 0 t 1’. For b r e v i t y  we

write x for the process Instead of x e ., 0 t ~ 1, e tc .  We re-

qui re  tha t  is .‘~~-me asur ah lo , and tha t  w Is a brownian

mot ion adapted to ~ ~~ 1 Moreover , the paths  x .(~) are in

D(LO ,T1;fl for each w € ~~~~. For g £ ~1 let

ft U .
a 

~(~~
) - g(x~) 

- J ~~~~~
- JO

Let be the c-algebra generated by y~ . 0 < s ~ t.

Defin ition. We say that (x,u ,w) is an admissible system

(P .O . ) i f :

(I) u~ is .‘1~ measurable, for 0 ‘ t ~ 1.

(ii) For each p £ SI, m~ is a ( .‘
~~

}-martlngalo and

cm
~

,w > t 
a 0~ 
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We recall tha t the condition <m~ ,w>~ 0 is equivalent to

requiring that m
~
wt is an { ~~)-martingale (8]. The partially

observed control problem , is to find an admissible system (x,u ,w)

minimizing E$(xT), given • and the distribution of the initial

state x0.

Since x has right continuous paths and w has Continuous

pa ths , m~ and m
~
w
~ 

are also martingalos wi th respect to {

Hence, we may assume that ( ~~~ is a right continuous family.

In add ition, we may complete these a-algebras by adjoining P-null

subsets of ‘.

In the special case of a constant control u, we can let x

be a Markov process associated with the semigroup 9~~.

The nonl inear filter equation. Let be a regular conditional

distribution for x~ given i!~. Given g £ C(S)

(2.4) lT~~ (g) — E[g(xt)I ~~~

Since is the trivial c-algebra , IT
0 

is the distribution of

x0. The nonlinear filter equation [7, Theorem 8.1), for g € 9,

is

(2.5) 11
~(~) 

— 11
0(g) +

+ J [I T5(gh) - IT5(g)fl~ (h)].d~5,

where 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 

_-

~~~

__j 
~~~~~~~~~~~~~~~~~
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~t
(2.6) — - J h(x~)ds0

is the innovation process. Note that gh and h have values

in R”, and is a v-dimensional brownian motion adapted to

{~~~~~~~}. From (2.4) with g = ‘~~ we have

(2.7) E$(x
T
) E{E

~
(xT)I~~~

} =

3. The Separated Control Problem.

Let .4’ = 4(E) be the space of probability measures on the

compact metric space £ . We give 4~ the w
*~topology; then 4~

is compact , metr izable. In the separated problem the “state”

process ~ is measure-valued , with lT
~ ~ 4. We define

admissible systems for the separated problem as follows . Let

1T,u,b be processes defined on some probability space (
~~~

, Y, { .~~~~ 
},P),

provided with an increasing family { of a-algebras , 0 < t < T.

We require that and u~ are 
~ t-measurab 1e, and that b

~ 
is

a brownian motion of dimension V adapted to {

Definition. We say that (1T ,u,b) is an admissible system (S)

if, for each g € 9,

(3.1) 
~~~~~~~ 

= 11
0 (g )  + J l T (~

o Sg)d s + J (1T
5(gh) 

- 1T

5(g)115(h)].db 5.

The separated control problem is as follows. Given 4’ € C(E)

and 11
0 

€ 4, find an admissible system (11 ,u , b) minimiz ing  E1T
T (4 ) .-

~ 

- —~~~~~~~- -~~~~ -~~~ -- - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—
~~~~~~~
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We emphasize that the separated problem is defined without reference

to the partially observed problem in §2. However , equations

(2.5)-(2.7) imply the following relationship between the partially

observed and separated problems . Given 11~ € .4, let

(3.2) ~ = inf{E4’(xT): (x,uw) admissible (P.O.), x0 has distribution 11
0)

(3.3) a
5 

= inf{E111(4’): ( n ,u ,b) admiss ible  (S) ,  1t
~~ givenj

If (x,u ,w) is admissible (P.O.), let be a regular con-

ditional distribution of x~ given ~~~ let 
~~~ 

—

~~~~~~~
‘

(ci , S~
’,P) = (ci,9,P). Then (11,U ,~~ ) is admissible (S). By (2.7)

and definition of a5,

a 
~~ 

L1I
T

(G) = E$(x1).

Since this is true for all systems admissible (P.O.)

(3.4) < ~~~.

In §9 , we will show that = a under the restrictive assumptions

that the generators are bounded operators , and that the

control u enters .S/” linearly.

4. Tightness; Closure Properties (Separated Problem).

If (lT ,ub) is an admissible system (S), then by (3.1) 11
~~

(
~~

)

is continuous on [0,T] for each fixed g £ 9. The same is true

for g € C(E), since 9 is dense in C(S) and n
~
(E) — 1.

______________ ;.u~ 1 - — 
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Since A has the w*~ topology , the measure-valued process A has

paths in CC [0,T);4).

Consider any collection .~~~
‘ of admissible systems (1r ,u,b). F

Let us show tightness of the corre-:~ onding co llection of probability

distributions of (ir ,b), which are measures on C([0,T];A) X

C((0,T];R ’
~) .  This is Lemma 2 below. Let us write 11 (g) for the

sample path 11~~ (g) , 0 < t < 1.

Lemm a 1. For every g E 9, e > 0 there exists a compact set

Bcg c C([0,T1) such that

P( li (g) £ Beg) ~ 1 - C .

Proof. By (3.1)

- lT~~(g) = F
g
(t) - F

g
(r) + Mg(t) 

- Mg(r)~

Fg(t) = J 1 15 (~~ ’ 5g)ds

Mg(t) = J (li
5(gh) 

- li~ (g)li (h)J.db .

We have j l T
5 (9”~g ) J  < ft ~~~U

g~~
J Kg~bY assumption (2.1) and compact-

ness of the control space U. Hence , Fg(~) is Lipschitz with

constant Kg,and Fg (O) = 0. Moreover, Mg(t) is a martingale

with increasing process

<Mg(t)> = J 1 115(gh) 
- IT

5(g)li~ (h)l
2dS.

~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~—- - -~~~~~ . -
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Since ~n 5(gh) - ~~5
(g) U (h)(2 ~ k1g i we have <Mg (’)> Lipschitz

w ith constant Klg • From these facts , Lemma 1 follows by well-known

arguments [9, Proposition 9] [5, Lemma 4]

Lemma 2. For every C > 0 the re  ex is t  compact sets

AC1 c C([O ,T] ;4) and A
~2 

c C([0,T] ;R’~) such that

• P ( m , € A CI) > 1 - C , P (b~ € A~~) > 1 - C .

The exis tence of follows from Lemma 1 and e l emen ta ry

properties of the w*~ topology on 4; see [5 , Lemma 3] . The

exis tence of A t,., is a known prop erty of brownian motion .

Closure results- . Let us consider sequences of admissible

systems ~~~~~~~~~~~ n = 1,2,..., all defined on the same

(c2 , ~~~~~~~~~~ If this sequence has a limit (11 ,u,b ) ,  in a sui table

sense , we wish  to give condi t ions under which (1T , u ,b) is

admissible. In the first closure result we consider constant

controls  u Unt n
We recal l  tha t A wi th the w*~ topology is metrizable. Hence ,

one can consider uniform convergence on [0,T] of sequences U
t ’

This is equivalent to uniform convergence of 11
~~(~) to

for  each g £ C ( E ) .

Lemma 3. Let (1T
n~

Un i bn) be admissible (S), n = 1, 2 , . . . ,
w ith  u~ € U a constant control such that u~ ~ u as n -‘
Suppose tha t 1T

fl t 
ITt, bnt 

-

~~ 
bt uniformly on [0,1] as n

- 

—— - -
~ 

— -—- —-— — — —-n 
~~~~~~~~~ -—



- — ~~~
-.---—

~~~
- -- - —- —---—— -- - —- 

~
- — ‘~~~~~~~~r—----~—- - ’—-- - ‘~~

,-
~
,-

~~-——~— - -
~~ —-- —— - - --.- - .—-- - _ _ _ _  - ——- —--- ——-—------- - —--- - - -—

10

wi th  probabi l i ty  1. Then (1T ,u , b) is admissible CS) .

Proof. For each g £ 9

lT~~~~(g) — 11
~ 0 (g) + ~ 1’~~5

(.~~~~
’1g )d s  + J e ~5.db ,

ens 
a lI~~5 (gh) - ~~5 ( g ) n ~ 5 (h)

We have since lT~~5
(E )  = 1

~~~~ 

(
~~ Ufl

g) - 11~ ~~~~
g) 

~ 
;fl g ~~~~ g + 11ns 

~~~~~ Ug) - 11~ ~~~U
g 

~~

By (2.1), II.v 
U
fl
g - ç~

U
g~~ -~ 0; and since •

~~~Ug € C(E),

fl
5
(,~/~~g) un iformly on [O ,T) with probability 1.

Hence , with probability 1

U
u r n  lT~ 5 (.V ‘~g)ds  = I lT

5(~~
% Ug)ds , 0 t < T.

n+~ ~O JO

Moreover , e~ 5 is uniformly bounded and tends uniformly on [0,T]

to e 5 = n5(gh) - fl
5(g)11 5(h), with probability 1.

By Lemma 1, given C > 0 there exists a compact set

D
~ ~ 

C( [0 ,T ] ; R ”) such that P(e~ £ D
~
) > 1 - c. Since compact sub-

sets of C([0,T];R’~) are equicontinuous , it follows by using

piecewise constant approximations that as n +

t t
- 

J e ns dbns 1 e 5.db 5 in probability.

H- - --- 

__ 
----  - - -~~~~— --

a -~-~-~~~~~~~~~~~~~ — ____
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See (4, pp. 789-790]. Therefore , (lT ,u,b) satisfies (3.1) for

each. g € 9, which shows that (1r ,u,b) is admissible. This proves

Lemm a 3 .

Let us now establish a second closure result , which will be

used in §5 for the proof of an existence theorem for an optimal

con tro l in the separa ted problem . We recall that u = (u1,...,u~) £ U,

where U c R~ . We now impose the following assumption on the

form of the generators .~f
’1:

(4.1) £‘= .V0 + 9’1’u , where ~~O 9(~~0) -* C(E),

9~~: 9(~~~2l
) ÷ C (E;R~) are linear operators with .9 c

I = 0,1.

Note that (4.1) implies (2.1).

When (4.1) holds , let

t
V
t 

= J u d s .

If (TT ,u,b) is an admissible system (S), let us call (lr ,v,b) an

admissible system (S’). Equation (3.1) can now be rewritten as

(4.2) lr~ (g) = 1T
0

(g) + J 1T
5(.$I’

0g)ds + J 1 T 5 (971g) .dv

+ J [lT
5(gh) 

- T1
5

( g )11
5

(h) ] ‘db
~
.

Thus, the conditions that (Tr ,v,b) be admissible CS’) are that

I 
_ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _ _
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-m casurable , tha t be a brownian motion adapted

to ( that (4.2) hold for every g E 9 , and tha t u~ dv
~
/dt

F is in U almost everywhere on (0 ,T) with probability 1.

Since U is compact , 1u 5 1 N for some N . Hence , v , is

Lipschi tz with constant N. Since v0 
- 0 , v lies in a fixed

compact subset of C([0,T];R~). We then have by Lemma 2:

Lemma 4. For every L > 0 there exists a compact set

A
~ 

c C ( [ 0 ,T J ;4  ~ x R
V
) such that P((”.,v .,h .) E A L) > 1 - C .

The second closure result is:

Lemma S. Let (lI
~~,v~~,b~~) be admissible (S’), n - 1,2 

Suppose that (4.1) holds and tha t  (lI n t , vnt,b it)

uniformly on [0 ,T] as n + 
~~~, with probabil ity 1. Then (11 ,v ,h)

is admissible CS’).

Proof. Consider any g € 9. Since ~~°g £ C(S) ,

+ B
5(~/’

°g) u n i f o r m l y  on (0 ,T~ . Similarly

-~~ 7T
5~~~~~

1g) uniformly on [O,T1. Since ~~~ + v 5 uni-
forml y on [0,T] and I dv ~t /dt I < N , we have

0 ft
u r n  J 71ns C~t

l g)ds
n-,.~ 0 0

lim J i ~ 5(.y
1g)’dv J 1I ~ç(.~f

1g)dv
~~~ 0 n ns 

~~~~~~

- S

The same proof as Le~itma 3 then shows that (II ,v ,b) satisfies (4.2),

~~~~~~~~~~~~~~~~~~~~~~

- - -  - - 
— — -

~~~~~~~ ~~~~~~~~

- -=- 
- -  

--
~~~ -~~~~~~~~~~~~~~~ —~~~~~~~~

- —
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for each g € 9. Finally, since ~~~ - dvn/dt is in U, U is

compact and convex , and vnt 
-

~~ 
V
t 

uniformly on (0,13, we have

dv t/dt £ U. Hence , (U ,vb) is admissible (S’).

5. An Existence Theorem (Separated Problem).

In order to show that there is a minimum in the separated

problem , we show that there is an adm issible system (S’) for wh ich

the infimum a in (3.3) is attained. This will be proved using

results in §4 , following the method of [4). The distribution of

a tr i p le (u ,v,b) is a probability measure on C([0,T]; 4 xR~ ~ R’5.

Triples (li ,v ,b), (n ,v ,b) with the same distribution measure are

identical in distribution.

Theorem 1. Suppose that (4.1) holds. Then there exists an

admissibl e system (S’) (ir ,i,~ ) such that E
~T
(4’) -

Proof. Let n”~n’
1
~n~ 

be a m inimizing sequence (S’); thus

Eli 
~~~ 

> ci and Eli T~
4’
~ 

-
~~ a as n + 

~~~. By Lemma 4 and

Skorokhod ’s theorem , there exist a subsequence of ii and

(ii , , E) identical in distribution with (li
n i vn i bn) such that

~~~~~~~~~~ tend to limits 
~~~~~~ 

uniformly on (0 ,11, wi th

probab ility 1. By Lemma 5, (i,~~,E) is an admissible system (S’).

Moreover

a • lim ET~1(~)

This proves Theorem 1.

- 
- -~~~ ~~—--- —•-

~~~~~~~~~~~~~ ——  — - - -  ~h.
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6. Constant Controls.

The remainder of this paper is concerned with the relationship

between the infima ci and a in (3.2), (3.3). For this purpose ,

we consider piecewise constant controls in §‘ s 7 and 8. In

preparation , let us suppose in this section that u is a constant

control, u~ = u for 0 < t < 1.

In §‘ s 6-8 we do not use linearity of ~~~ in u in (4.1).

Instead, we make the general assumptions (2.1) and (2.2).

Lemma 6. Given IT~ E 4, ii € U , and a brownian motion b , there

exists an A-valued process U which is a solution to (3.1) for all

g € 9. Moreover , the distribution of ~ is unique (it depends

only on iT
0 

and u ) .

Lemma 6 follows from results of Kunita [6] and Szpirglas [11] .

Kunita ’s construction [6, p. 374] gives uniqueness in distribution

to the corresponding equation for 7t .~ 
written in terms of the

semigroup 5~ on C(S) generated by ~~~ In (11, Th. 111.1]

Szpirglas showed that that equation is equivalent to (3.1).

Lemma 7. Given Tt
~ 

€ 4, u € U , and F € C(4), let

~~U0,u;F ,T) = EF (1TT). Then ~‘ is continuous on 4 x

Proof. Let + it0, u + u (ui, € U); and let (iT~ ,u~ ,b~)

be admissible (5) with the state of the process it~~~ wh en

t 0. By Lemma 2 and Skorokhod ’s theorem , there exist (~F~,E~)

identical in distribution to (it~ ,b~) and a subsequence of n

_ _ _ _ _ _  
~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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such that U
n ~ u, ~~nt’~ nt~ 

+ (ll
~
,b
~
) uniformly on (O,T) with

probabili ty 1. By Lemma 3, (T,u,b) is admissib le (S). Moreover ,

11
~ 

= 11
0~ 

Then

u r n  ip (iT 0~u~ ;F ,T) lim EF(I 
~~~ 

EF(IT) 
a 
~‘(U 01 u;F ,T).

This proves Lemma 7.

Note that in def ining ~‘(IT 0, u;F ,T), we have used the uniqueness

in distribution of 11
T’ which is implied by Lemma 6.

From Lemma 7 and compactness of A x U we have :

Corol lary. V(1T) = mm IP(ii ,u;F ,T) is continuous on 4.
uE U

7. A-Admissible Systems (Si.

In this section and in §8 , we let A denote a fixed partition

of [O ,TJ into subintervals [tk,tk+l ], with 0 = t0 < t1 < ...
tm 

= T. We define Vk(
n) by backward induction on k. For 1~ € 4

(7.1) Vm (1T) —

(7.2) V
k
(1T) a mm 

~~
n ,u ;V k+1,tk+1 

- tk), k = 0,l ,...,m - 1 .

By the Corollary in §6, Vk E C (A ) .

Equation (7.2) is a discrete-time dynamic programm ing equation

for the separated control probl em , with constant control on each

interval [tk,tk+l), in a sense which we shall indicate below . 
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Definition. An admissible system (1t ,u ,b) is A-admissib le (S).

if u~ is constant for tk < t < t~~~4 ]~~ k — 0, l ,...,m - 1.

We recall that an admissible system (S) is defined on some

(~
, 

~~~~~~~ ~
‘
~~‘P)~

Lemma 8. If (fr ,u,b) is A-adm issible 1 then

Vk(n t )  < E( 1T~ . (4 )  I -
~~~

‘

~~ ‘ P - a.s.
k k

Proof. We use backward induction on k. For k m , tm - T ,

Vm
(ITT) 

a it~~(~~) 
~~~~~~~~ ~~~~~~ 

P a.s.

Suppose Lemma 8 is true for k + 1. Then

(*) E{ll
T(~~) I  1 1 = E{E{nT(~ )I -

~~~~~ 

} I ~
‘ I > E(Vk+l (n~ ~

1
~-~
’
t ~~~ ‘

k k+l k k+l k

Let ~ denote (I1 ,u,b) restricted to [t k,tk+l) ; and let

a F~ (w ,.) be a regular conditional distribution of this triple

given ~~ . With P-probability 1, u~ is a constant U k Ofl
k

(tk,tk+l) and iT is constant rk-almost surely. Moreover , the
Ic

restriction of bt to ( tk~
tk+1) is a rk.browni an motion . Let

t U

G(c,t) = 11
~(~) 

- n~ (g) - J ~~~~ 
kg)d~;

k tk

- f (u (gh) - n
5(g)1t 5(h)]’db 5.

t
k

~~~~ ~-~~-—- —— ~~~~~;: :
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Let G(~) = max IG(~,t) I. By (3.1), G(~) = 0, P-almost surely.
(t k,tk+1]

Hence, G(~) - 0, rk-almos t surely, with P-probability 1. With respect

to the measure r k , c is a solution of G(c,t) = 0 on

(tk)tk+l), for each g £ 9. Hence, P-almost surely

E{Vk+l (it
t )l 

~
tk

1 = E kVk l (it ) )  = 
~~

(iT
t ,uk;Vk+l,tk+1 - t

k
)

> V (n ) .
— k t

k

This, together with ( *) ,  proves Lemma 8.

Since 11
0 

is given (not random) Lemma 8 implies when k = 0

(7.3) V0
(11
0) < E(lt

T(~~
)).

Let

(7.4) a~ = inf{E1TT(~): 
(T1 ,u,b) A-admiss ible (S), iT

~ 
given).

Then (7.3) implies that V
0
(11
0) 

< c&~~, In fact, V0(n 0) 
a 

~~~~~~~~ This

follows from Theorem 2 in the next section. A direct proof that

V0(110) = could also be given in terms of the separated problem
-I-

only without reference to admissible systems (P.O.); but we shall

not do so.

In a similar way, Vk(n k) is the infimum of E1T
T(~) for a

separated problem on (tk,TJ, using controls constant on intervals

[t t,tz+i), £ > k , and with = 11k’ This justifies calling (7.2)
Ic

a discrete-time dynamic programming equation.

-

- —- - _- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -- - -~~~~-- - --.--
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8. A-Admissible Systems (P .0.1. As in §7 , le t A be a f ixed
part i t ion of (0,1].

Defini t ion.  An admissible system (x ,u ,w) is A-admissible  (P .O.)

if u~ is cons tan t f o r  tk < t < ~~~~ k = 0,1,.. .,m - 1.

Given 1I
~ 

€ .1 let

(8.1) — inf E
~

(x T) :  (x ,u,w) A- admissible (P.O.), x has

distribution ll o }.

As in (3.4) we have < ~A The purpose of  the pr esent
sec tion is to prove:

Theorem 2. - a~ a V
0
(1T
0
).

Since V
0
(11
0
) < < ci

A
, it is suff icien t to prove tha t, f o r

any c > 0, there exists (x ,u,w) A-adm issible (P.O.) such that x 0

has dis tribu tion and

(8.2) Ef~ (x1) }  < V
0
(11
0) 

+ c~

This follows from Lemma 10 below .

We beg in with the f o llowing cons truc tion, s imilar to one used
by Bensoussan-Lions (121. Let O~,..., 0~, 

be dis joint, Bore l
measurable subse ts of  .4, with A = 0] U ... U 0~. Let U

ki € U~p

k = 0,1,...,m - 1, j = l,...,.L. Given an initial distribution 11~
for X0, we wish to construct a A-admissible system (P.O.) (x,u,w)
with the prop er ty

_  ---------- -~~~~~~~~~— ~~~~~
- - - - - 
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(8.3) u~ = Ukj ~~ tk 
£ 

~~~ 
tk < t < t1~~1~1 k = 0,l,...,m - 1,

where is a regular conditiona l distribution of x~ given

The system (x,u,w) will be defined on the “canonical” sample

space

= D([0,T];E) X C( [0 ,T ] ; R ’
~) ,

whose elements we denote by x ,w - Let be generated by

x ,w pa ths for 0 < s < t, with $~ = 3~~. We define by in-

duc tion a sequence of probability measures 
~O’~ 1’•••’~ m 1  

as

follows ; then we take P = P . The measure P will be definedm-l k
on -~~~~~

k+ 1

Let 
~~~ 

be the probability distribution on D([tk,tk+l];E)

of a Markov process with initial state x.~ = x and generator
k

From assumption (2.2) and the Markov property 
~xk 

depends con-

tinuously on (x,u) € E X u in the sense of convergence of finite

dimensional distributions . Let Wwk be Wiener measure on

C([tk,tk+l];R
’
~
) for paths starting at Wtk 

= w.

For 0 < t < t1, the control is constant: u~ = U
0 

= U
03 

for

that j such that 1T~ € 0.. We define P0 on as the
3 1

product measure P0 = Q0 X w00, where

U

Q0(B) 
- 

IE~~
0 0  B £ JT

~1
.

Now suppose that 
~0’~

1’••• ’~ k 1  
have been defined , as well

h as piecewise constant controls u~ for 0 < t < tk. As in (8.3),

~

-—- - -

~

-—

~

- ~~~~~~ - - ~~~-~~~~~~~ - - ---- -~~~~~~~~~~- - - -~- - -~~~~~~~~~~~~~---~~~~~~~~~ - -—
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we define u~ = Ukj  if -IT £ 0~, tk < t < tk+l, where tk 
is

a regular conditiona l distr ibution of x~ given 9~~ with
k t k

respect to the measure 
~kl • 

Let (x:,w:), (x”,w”) denote the —

restrictions to [0,tkl and (tk,tk+1 ] respectively of (x ,w).

The measure 
~k 

is defined first for subsets of ~2 the form

B’ X B”, where B’ € is generated by (x’,w’) paths and

B is a “window set” of the form B” = { (x ” ,w”) :  (x5 ,w5 ) € A~}
for finitely many s~ € (tk,tk+l J . Let = Q~ k and Wk 

= Wwtk tkwhere Uk = u.~ for tk < t < tJ~4~~. Then 
- —

(8.4) Pk(B’ 
xB~) = 

JB,
Qk 

X Wk)(B )dPk l (X :,W:).

This determines the probability measure Pk on ~~tk+l
We take P =

Lemma 9. The system (x,u,w) is A-admissible (P.O.).

Proof. By construction, u.~ is ~~~-measurable and constant

on each interval of the partition A . According to the definition

in §2 it suffices to verify that, for each g € 9, m~ and m
~
w
~

are { 5~
}-martinga1es, where is defined by (2.3). Let us

f irs t cons ider tk < r < t < tk+l. Let J” be the a-algebra - 
-

r
generated by x”,w” paths restricted to (tk,r]  . Th en

E k k {(m~~ m~ ) ( ..9~ }

Q t U
k

~ I 
- E k {g(x ~~) - g(x~ ) - 

‘r
d’ g(x5)ds~ 9;) = 0 .

LL 
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Hence , for any B” €

IB,t~~t r ~~~k k ) = 0.

Since m~ - and w~ - wr are independent with respect to
X Wk, we also have

JB,, t r t r
~~~~k k ) = 0.

For B € 9 of the form B = B ’  X B” with B’ € 9~’ and
B ”€  

~~ r tk

fB t r k  = 

‘B ’ JB , , t r ~ ~~k k~ k-l  =

Thus , E Cm ~~I $~.
} = m~. Similarly,

~~~~~~~~~~~~~~~ _9~.} = 0 ,

from which Efm~w~ I $7 = m~wr , for tk < r < t < t ]~~j If
r < t~ < t < tj~~]~ we first condition on ~~ and then on $~~.tk r
This shows that m~ and m

~
w
~ 

are ~ 9~}-martingales , from which
Lemma 9 follows .

Lemma 10. Given e > 0 there exists an admissible system (P.O.)

(x ,u ,w) such that 
-

E {1T
1(~ )~ tk 

< Vk
(hl

t ) + c (] . - 
~~)

L -—
-

~~~~~~~~~~~~~ - -  _________ _ _ _ _ _ _ _
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for k • 0 , 1 , - . . ,m - 1 and w i t Ii any di st r i b u t  ion 1~ for x0. Here

n is a regular conditional distribution for x given 9>~ -tk tk tk

Proof. In the construction above we choose the partition

~~~~~~~~ 
of 1 fine enough and U

ki 
such that

i (a ,ukJ ;Vk+l ,tk+l 
- tIc) 

< \
k
(11) +

for all 11 € 0~, Ic — O , 1, . . . , m. This is possible  by Lemma 7 and

compactness of I >~ U. The probab ility measure P = ~~~ and the

piec ewise-constant control process u~ on the canonica l sample

space are defined by the construction . We now proceed by backward

induction on k (compare with the proof of Lemma 8). For Ic = in ,

Vm (’IT) 
11
T(~). Proceed ing inductively, suppose Lemma 10 true for

k + 1. Let be a regular conditiona l distribution for

(x,u,w) given Y~ - With P-probability 1, u~ is a constant Uk.
k

on (t k,tk+1) and lT~~ is constant  O k -almost  su re ly .  Moreover ,
Ic

by (2.5)

— li~~ (g) + f 1T
5(.V

1’3g)ds + f
t 

(lT
5(gh )  - 1T

5
(g)11

5
( h )]  d~~ ,

for tk < t < t}~~ Hence , by the definition of ~p in Lemma 7,

- 
~~

( i T
t 
,uk ;vk+l,tk+1 - tk).

We then have , wi th P-probability 1,

0

t
k 

~ 
kv ( i T ) < V]~(1’~~) + -~~ 

~~~~~~~~~~~— --- -- -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



t < E{V~~1
(it~ ) I tk 

+ £(l -

< V (it ) + c(l -

This proves Lemma 10.

We get the inequal i ty  (8 .2 )  needed to prove Theorem 2 by

taking k = 0 in Lemma 10, since is the trivial a-algebra

and E1T
T(~

) = E
~
(xT).

9. A Sufficient Condition for ~ = C .

According to (3.4), c~ < 
~~~ while by Theorem 2, C =

Since the class of A-admissible systems is contained in the class

of admissible systems (either (P.O.) or (S)), we also have

and ciA > ci . Ther efore , we will have ci = ci if we can show thats -  5 5

(9.1) ci = inf ct~•S A S

Unfortunately, we have verified (9.1) only under the rather restrictive

assumptions of Theorem 3 below .

The proof of Theorem 3 will proceed as follows . Given any

admissible syst~m (S) (ir ,u,b), approximations (11~ ,u”,b) are mad e

such that u~ is piecewise constant. It is shown that 1T~ is near

in a suitable sense , if E J Iu~
-ut I’dt is small. See (9.5),

0
However , our proof of this estimate uses boundedness of the generators

To s imp li fy matters we also assume that the control enters

IEL..._._...._...._.___ — - - - 
-- - ~~~~~

— 
- ~~~~~~~~~~~~~~~~~~~~~~~ 

- - —--



linearly , ~~~U =~~0 ~~~~~ as in (4.1).

Theorem 3. Assume that (4.1) holds and that

are bounded operators on C(S). Then ci = ci .

Proof. Let (iT ,u,b), (7rn,Ul
~,b) be admissible (S) with

= •fl0. Let = it~ - Ir~~, O~~ (g) = E[~~ (g)]
2; both 

~~~~~~~~ 
depend

of course on n. From (4.2) we have

•~ (~) = 
J
~~~(~~0g)ds + 

J
~~~(.~~lg).U d

+ j 1 T~~(~~ 1g ) . ( u 5~ u~ )ds

+ [$5(gh) - (g)it (h) - ~5(h)~~~(g)] .db 5,

(9.2) °~~~
(
~~~)  < K{J (05(9’

0g) +

+ I I~ ’
1g I f 2E i I u s~~~~I

2d5

+ J [0
5(gh) + 11 h 11 20 5 (g) + i i g I I

2O
5

(h) ] ds ,

for some constant K.

Le t h = g0; take g1,g2,... such that < C and their

linear combinations are dense in C(S). Let ..~‘
2g = hg,

= {g~), Y~3 
= {~•~

øI 1g~ , i = 0 , 1 , 2 ) ,

..., ~~ 
= {.~‘

3f, j = 0 , 1 , 2 :  f €

-— - —--—--- ~~ - -~~~~ --~~~~~~~~~~ 1TT ~~ 
_
~~~~~~i -~~~~~ -- — - - - -—-—-- -- -~~~ ~~~- - ~~~~-)--
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where j — 0 , 1 , 2 • Let

~k
(t) — max 0 (1)3 f€ f lk .  

t

2max H~ I I
f€ 5k-i

H U ~ U 11 I t ~ a u J I u t
_u
~ 1

2
dt .

Since ..~~
‘0 ,.V1 

are bounded opera tors and I I h H  < ~‘ , we have for
some M

~k+l ,j  ~ MY~~~ Y 0j ~ c2.

Hence , 
~kJ 

~ c2~i
k. In  ( 9 . 2 )  we t ake  g € Since is a

bounded opera tor  we have for some K 1

t 
2(9.3) 

~kj
(t) ~ K1 1J ~~~~~~~~~~~~~~~~~~~ 

+ 

~~~~~ ~ Y~~ %0(s)Id s + Y kj H u ~ u H2 1.

Take P > M , and let

(9.4) 
~. ( t ) • ~ p

-k
~~~~~~(t )

-‘ k—0 -~

B( t ) — ~ 2~~~~~~~ ( t ) .
3— 0

Prom (9.3)

_ _ _ _
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t t k 2 k
~. ( t) < K 1fl (p+ l)8.(s) + I 8~~ (s) (  

~ P C M )ds
3 -& 

~o ~O 
“ k=0

+ ( ~ P
k
C
2
M
k
)I, U~ U

n II ~~.
k-0

Since < ~~, we then have for some K2

t t
~ ( t )  < K 2 [J ~(s)ds  + Hu~u Ih l l~ ] ,

(9.5) 0

~(t)  < exp(K 2T ) I I u - u ” I I ~~, 0 < t < T.

To complete the proof of Theorem 3, given (T ,u,b) admissible (S)

let u~ , n = 1, 2 , . . . ,  be a sequence of piecewise-constant controls

such that Ifu -u ~
h II ~ -

~~ 0 as n -‘- ~~~. The control u~ is constant

on intervals  (t~~, t~~ 1) of some par t i t ion  A
lk of [O ,T 3 ,  and u~

is measurable on [t~ ,t~÷1). Since and are
tk

bounded ope ra tors , the technique of successive approximations

prov ides a solution 11~ to (4.2) corresponding to the initial data

11
~ 

and u
~
,bt . We omit the proof (one proof uses a method like

the one above , with D the difference between successive approxima-

tions to the solution 1T~~) .  Inequality (9.5) implies that

E1t~ (g~) -
~ ETI

~~(~~~) as n ~~- 
~~~. Since g0,g1,g2,... span C(s),

Eitn (g) -
~~ 

Eli (g) for all g £ C(E), 0 < t < T. In particular ,

ElT~ (o) -‘ ETT(s). Since U < ci5
n < E4(4),

A
ci < u r n  sup ~~

n 
- 

E11
1(4~).

Since the jnfjmum of the right side among all, admissible (T ,u,b)

is ~~~~ this proves Theorem 3. 

~~~~ ---____
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